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Introduction

Hodge Theory is a means of studying the cohomology groups of
manifolds using methods from the analysis of partial differential
equations.
A key result in Hodge Theory is the Hodge Decomposition theorem,
which we will state and prove below.
The Hodge Theorem provides an interested an unexpected
connection between the study of distributions and
pseudodifferential operators, and algebraic topology.

Background: Notation

An n‐dimensional multi‐index is an n‐tuple α = (α1, . . . , αn) ∈ Nn.
For multi‐index α = (α1, . . . , αn) ∈ Nn and (x1, . . . , xn) ∈ Rn we
define

∂α = ∂α1
1 ∂α2

2 . . . ∂αn
n , xα = xα1

1 . . . xαn
n and D = 1

i
∂ (1)

For an open set U ⊂ Rn and non‐negative integers k we let Ck(U)
denote the space of function ϕ from U into C such that ∂αϕ exist
and are continuous for all α with |α| ≤ k. Define the norm
‖ϕ‖Ck(U) = max|α|≤k sup |∂αϕ| on this space.
Define the space of smooth functions as C∞(U) = ⋂

k∈N Ck(U) and
then let C∞

c (U) denote the subspace of C∞(U) consisting of smooth
functions with compact support.

Background: Distribution Theory

For an open set U ⊂ Rn we define a distribution on u as a linear map u :
C∞

c (U) → C such that for all K ⊂ U compact, there exists C ≥ 0, n ∈ N
for which |u(ϕ)| ≤ C‖ϕ‖Cn(U) for all ϕ ∈ C∞

c (U). We let D′(U) denote
the space of distributions on U . For u ∈ D′(U) and φ ∈ C∞

c (U) we take
(u, ϕ) := u(ϕ).
Example
For f ∈ L1

loc(U) we define Tf(ϕ) = ∫
U f (x)ϕ(x)dx. We claim that

Tf ∈ D′(U). Indeed, for all K ⊂ U , we have that

|Tf(ϕ)| =
∣∣∣∣∣

∫

U
f (x)ϕ(x)dx

∣∣∣∣∣ ≤
(∫

K
f (x)dx

)
‖ϕ‖C0(U) (2)

We define a notion of convergence (but not a topology) on D′(U) by
saying that uk → u in D′(U) if (uk, ϕ) → (u, ϕ) for all ϕ ∈ C∞

c (U).
We can also define (by duality), differentiation of distributions,
multiplication of distributions by smooth functions, and convolution
of distributions.

Example
Consider a sequence fk ∈ L1

loc(U) converging pointwise (almost ev‐
erywhere) to f ∈ L1

loc(U). We would like it fk → f in D′(U). Indeed, if
the fk are uniformly bounded above by some locally integrable func‐
tion, then by the dominated convergence theorem we find that for all
ϕ ∈ C∞

c (U),
lim

k→∞
(fk, ϕ) = lim

k→∞

∫

U
fk(x)ϕ(x)dx =

∫

U
f (x)ϕ(x) = (f, ϕ) (3)

and so fk indeed converges to f .

Distribution Theory (Continued)

Example
Let fk(x) = k10≤x≤1

k
. Then fk → 0 almost everywhere but fk → δ0 in

the sense of distributions.

The above example illustrates how the notion of convergence in the
sense of distributions is relatively weak.

Elliptic Regularity

We are motivated by questions concerning the regularity of solutions
to PDEs. Intuitively, the singular support of a distribution u ∈ D′(U)
consists of the set of points ofU where u is not locally a smooth function.

Theorem
Let P be a constant coefficient differential operator that is elliptic.
Then, for all U ⊆ Rn and u ∈ D′(U), sing supp u ⊆ sing supp Pu.

This result can be generalized to the manifold setting which is critical for
the proof of the Hodge Theorem.

Theorem
Let P be an elliptic operator in Diffm(M) for some non‐negative inte‐
germ andmanifoldM . Then for all u ∈ D′(M), we have sing supp u ⊆
sing supp Pu.

The proof of elliptic regularity relies on the development of the
theory of pseudodifferential operators and the accompanying
symbol calculus.
The study of the singularities of distributions is important and
interesting in its own right and is a large component of the field of
microlocal analysis.

Vector Bundles

We define a (real) vector bundle as a triple (M, E, π) such that

M is an n‐dimensional manifold, E is an n + m dimensional manifold
π : E → M is surjective and π−1(x) has the structure of an
m‐dimensional vector space for all x ∈ M

For all x ∈ M there exists a neighborhood U of x and a
diffeomorphism φ : π−1(U) → U × Cm such that φ|π−1(x) is an
isomorphism between π−1(x) and {x} × Cm

Example
The trivial bundle consists of a manifoldM , E = M ×Rm and π(x, v) =
x.

Example
The tangent bundle TM and the cotangent bundle T ∗M are both vec‐
tor bundles over M with π again simply being the projection map.

Given a vector bundle (M, E, π), a smooth map σ : M → E is a (smooth)
section of the bundle provided π ◦ σ = Id. The collection of smooth
sections of a vector bundle (M, E, π) is denoted C∞(M, E).

Differential Forms

Fix a compact, oriented, n‐dimensional manifold M . We define the
vector bundle of k‐forms on M as Ωk = ∧k(T ∗M) and the vector
bundle of all differential forms on M as Ωo = ⊗n

k=0Ωk.
Elements of C∞(M, Ωk) are called differential k‐forms.
Let dk : C∞(M, Ωk) → C∞(M, Ωk+1) denote the exterior derivative. It
is well known that dk+1 ◦ dk = 0 for all k.
This allows us to define the deRham cohomology groups
Hk

dR(M) = {ω ∈ C∞(M, Ωk) : dkω = 0}/{dk−1ω : ω ∈ C∞(M, ωk−1)}.
(4)

Suppose we have a Riemannian Metric g on our manifold M . Via the
Riesz representation theorem, g induces an inner product on
C∞(M, Ω1) = T ∗M . We can then use this define a canonical inner
product on C∞(M, Ωk), the space of differential differential k‐forms.
Define δk+1 to be the adjoint of dk for all 0 ≤ k < n. Then, define
Hk = {ω ∈ C∞(M, Ω1) : (d + δ)2ω = 0}. This is the space of
Harmonic k‐forms.

Hodge Decomposition Theorem

The Hodge Decomposition Theorem is important because it provides a
gateway between de Rham cohomology (an algebraic topology concept),
and the space of Harmonic Forms (a Riemannian Geometry concept).

Theorem
Let M be a n‐dimensional oriented compact Riemannian Manifold.
Then

C∞(M, Ωk) = Hk ⊗ im δk+1 ⊗ im dk−1 (5)

and
ker dk = Hk ⊗ im dk−1 (6)

so in particular
Hk

dR(M) ∼= Hk (7)

Proving that the sum is direct boils down to a simple linear algebra
computation. The challenge of the proof is showing that any form
can be decomposed in the desired manner, which makes use of
some aspects of Fredholm theory for elliptic operators, which itself
makes critical use of elliptic regularity.
The Decomposition Theorem can be generalized to other settings,
including the deRham cohomology of M over C and to the setting of
Kahler manifolds.
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