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Heegaard Floer Theory: An Overview

Heegaard Floer Theory is a form of Lagrangian Intersection Floer ho-
mology which is specially adapted to use in 3-manifold and 4-manifold
topology.

The theory transforms the data provided by a Heegaard diagram for
a 3-manifold into a graded module, called Heegaard Floer homology,
which is a topological invariant of the 3-manifold.

It has been used with great success in knot theory and in investigating
the structure of the homology cobordism group, in large part because
of its high computational tractability relative to other Floer theories.

The Morse-Smale-Witten Complex

One of the most important developments in Morse’s “doctrine of
critical point theory” was the realization that the critical points of a
Morse function f : M → R can be used to compute the homology of
M .

The Morse-Smale-Witten chain complex serves as an important model
for the Heegaard Floer chain complex.
(i) The chain groups C∗(M, f ) are generated by the critical points of the

Morse function. The complex is graded by critical point index.

(ii) The differential operator ∂∗ is given by counting, with sign (according
to certain orientation rules), the number of gradient flow lines of f
from a given critical point to the critical points of index one below.

Fig. 1: The critical points and gradient flow lines on a tilted torus.

Roadblocks to Floer Theory

There are two primary challenges when trying to create the analogue
of this chain complex in an infinite-dimensional context (the setting of
Floer theory):

• The notion of index is challenging to define – critical points have
“infinite index.” The best one can hope for is a notion of “relative
index.”

• The moduli space of gradient trajectories may not be compact
– gradient flow lines cannot be “counted.”

Heegaard Floer Homology

Morse theory reveals that 3-manifolds admit Heegaard splittings: a
decomposition into two handlebodies glued along their boundary. This
can be seen by choosing a self-indexing Morse function h : Y → R
on the 3-manifold, and considering the two manifolds-with-boundary
h−1([0, 3/2]) and h−1([3/2, 3]).

The information which informs exactly how this gluing takes place can
be conveniently stored in the form of a Heegaard diagram (shown be-
low).

Fig. 2: A genus 2 Heegaard Splitting of S3

The α and β curves shown provide all the information needed to
determine the 3-manifold up to homeomorphism. One can view all the
curves “simultaneously" by looking at the tori Tα and Tβ given by the
products of the curves inside of the symmetric product Symg(Σg) over
the genus g surface Σg on which they reside.

The framework of the Morse-Smale-Witten complex can be applied to
the space of paths P(Tα,Tβ) between the two tori.

(i) The resulting chain complex CF (Y ) has the intersection points Tα ∩
Tβ as generators.

(ii) The differential operator counts holomorphic disks between the inter-
section points.

The homology of this complex is the Heegaard Floer homology of the
3-manifold with which we started.

Additional structure may be added to the complex to obtain richer
invariants, including grading by Spinc structures, and tracking the inter-
section number of disks with a particular codimension 2 submanifold.

The aforementioned problems with adapting the Morse-Smale-Witten
framework to the infinite dimensional space of paths P(Tα,Tβ) were
resolved as follows:

• The Maslov index provides an “expected dimension" of the space of
embedded disks between intersection points, and thus resolves the
issue of a “relative index."

• Appropriate perturbations could be applied to make the moduli
space of holomorphic disks compact, in the case of a Maslov index of
1 [2].

Involutive Heegaard Floer Homology
and Homology Cobordism

Involutive Heegaard Floer Homology incorporates information about
the chain homotopy involution on CF (Y ) induced by switching the
Heegaard splitting Morse function from h to −h. The involution arises
from a change in the Heegaard data; namely, a “conjugation”

(Σg, α, β) 7→ (−Σg, β, α).

This construction gives rise to some important homology cobordism
invariants

The involutive theory has been used to give a reproof of Furuta’s
Theorem on the existence of a Z∞ subgroup of the homology cobor-
dism group Θ3

Z, as well as an explicit generating set.

In fact, it is the only known approach which can be used to prove the
stronger fact that Θ3

Z has a Z∞ summand.

The Problem of Naturality

One drawback of Heegaard Floer theory is that its “higher order"
naturality properties remain unsettled. This issue arises from the
fact that the space of Heegaard data (i.e. the space of “choices”
made when constructing the Heegaard Floer chain complex) is
homotopically nontrivial.

Juhász, Thurston, and Zemke established first order naturality of the
Heegaard Floer chain complex, up to a canonical chain homotopy
class of chain homotopy equivalences [1]. This allowed for the
construction of the involutive variant.

It remains to be shown whether there exists a canonical chain homo-
topy between any two representatives of the aforementioned chain
homotopy class. Such a higher order result could lead to more pow-
erful invariants.
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